The Groove of Math

or in other words, the Devil is in the Details

About my Master’s Thesis: Notes for a brief seminar [Update #1]

Leave a comment

Hi all! Since I was asked to give a talk about my Master’s Thesis, I decided to write some brief notes in which I explained the main definitions and the tools used and which results I obtained so far. Clearly I skipped lots of technical results and computations which I clearly find interesting but are not suited for this kind of seminar.

Let me know if something is unclear, I will do my best to explain it!

Riccardo Pedrotti – Stable classification of four manifolds and signature related questions

[Update #1 (4 April 2017)]may have completed the stable diffeomorphism classification for smooth oriented closed four manifolds with fundamental group the dihedral group. The two missing w-types were w=x^2 and w=y^2 in the case where the n in the Dihedral group D_{2n} was a multiple of 4. I have to triple-check what I’ve done so far, but the idea was to exploit the cofibre sequence given by James:

Tq^*E \to TE \to \Sigma^{\dim F}T(E\oplus F)

For vector bundles E and F over a space X, with q\colon S(F)\to X is the projection of the sphere bundle of F. With such cofibre sequence and some algebraic observations I was able to compute the stable page of the relevant AHSS/JSS and therefore providing an answer to the missing cases. I am so excited! I will try to address now the hard part, provide some unstable result, before June.

I will update the pdf above as soon as I have some time, now I’m quite busy  with the deadlines of the PhD programs I was admitted/ I’m on the waitlist

[Update #2 (13 May 2017)] I uploaded an updated version of the notes, with some minor corrections and updates on my results. A correction which is worth noticing is that it seems (according to my computations at least) that the secondary invariant is not a relevant stable diffeomorphism in our cases, since it is always possible to change the normal 1-type of an almost spin manifold in such a way that the sec-invariant is always trivial.

[Update #3] Sadly, I found an error in my computations. I’m trying to fix it, but for sure at least a case in the stable diffeomorphism classification has to be checked again! I’m really sorry for this but I try to be as much precise and sincere as possible, especially when dealing with math! I hope to be able to provide the complete classification asap!

Advertisements

Author: RicPed

Young mathematician :)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s